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The perturbed two-dimensional oscillator: eigenvalues and 
infinite-field limits via continued fractions, renormalised 
perturbation theory and moment methods 
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t Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, 
Waterloo, Ontario, Canada N2L 3G1 
$ Department of Physics, Atlanta University, Atlanta, G A  30314, USA 

Received 19 May 1988, in final form 8 November 1988 

Abstract. We employ'two independent methods to obtain consistent and accurate values 
of eigenvalues E ( A )  of the perturbed two-dimensional oscillator Hamiltonian, H = 
H(O)+ hx2y2:  (i) continued-fraction representations of the Rayleigh-Schrodinger perturba- 
tion series to large order, as well as a renormalised version of perturbation theory, and 
(ii) a method of moments based on the positivity properties of the factorised wavefunction. 
The latter generates converging upper and lower bounds to E ( A ) .  The two methods are 
also used to obtain estimates for the eigenvalues F'O) of the infinite-field limit Hamiltonian, 
H, = p :  +p',  + x 2 y z .  

Introduction 

In this paper we examine the eigenvalues E ( A )  of the following two-dimensional 
perturbed oscillator Hamiltonian: 

a2 az 
axz ay2  

H = ----+ X' + y 2  + AxZy2 

= H(O) + Ax2y2 (1.1) 

(1.2) 

a special case of the more general family of problems defined by 

H = p :  + p :  + A x Z  + Byz + C x z y 2  + D x 4  + Fy4. 

Hamiltonians of the above form have received attention from the viewpoint of perturba- 
tion theory and quantum field theory (Banks et a1 1973), molecular spectroscopy 
(Percival and Pomphrey 1976) as well as dynamical systems theory (Pullen and 
Edmonds 1981). Various methods of obtaining good estimates of the eigenvalues of 
such Hamiltonians have been devised, including inner product perturbation theory 
(Killingbeck and Jones 1986) and a modified perturbation theory (Fernandez and 
Castro 1986). 

Here, we focus on two independent methods to obtain consistent and accurate 
values of E ( A )  over the infinite range O C A  COO of the coupling constant: (i) a 
renormalised version of traditional Rayleigh-Schrodinger perturbation theory ( RSFT), 
and (ii) a method of moments based on the positivity properties of the (factorised) 
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824 E R Vrscay and C R Handy 

wavefunction. In addition, we obtain accurate estimates for the eigenvalues F(O) of 
the 'infinite-field' Hamiltonian associated with (1.1): 

Ei, = pf + p:,  + x2y2 .  (1.3) 
The importance of these eigenvalues arises as follows: a (unitary) scaling transformation 
x + ax ,  y + a y ,  a > 0 ,  of the Hamiltonian in (1.1) shows that its eigenvalues E ( A )  admit 
the asymptotic expansion 

A + W  (1.4) E ( A )  - ~ 1 / 3  2 ~ ( " ) ~ - 2 / 3  

n = O  

i.e. the eigenvalues F(O) of (1.3) appear as the leading-order coefficients in (1.4). To 
estimate F(O), the moment method may be applied directly to the Hamiltonian in (1.3). 
As far as RSPT is concerned with the infinite-field problem, we first demonstrate that 
the RS perturbation series is divergent but asymptotic to E ( A )  and Stieltjes, admitting 
a Stieltjes-type continued-fraction (CF) expansion whose coefficients c, grow linearly 
with n. A knowledge of this latter behaviour allows the construction of converging 
estimates to in terms of the c,. Even more effective in this context, however, is a 
'renormalisation' method which effectively transforms the RS series into a new series 
which is summable to F(O). Let us finally mention that our discussions will be restricted 
to the ground state. The perturbation methods apply directly to excited states. The 
moment method is also applicable, but with some minor modifications. 

2. Rayleigh-Schrodinger perturbation theory (RSPT) and continued fractions (CF) at 
large order 

Let us denote the RS expansion for the ground state of (1.1) as 
m 

E ( A ) =  2 E ( " ) A " = E ( ~ ) + A A E ( A )  (2.1) 
n = O  

where E(') = 2, E ( ' )  =I 4. (The first ten coefficients are tabulated in Killingbeck and 
Jones (1986).) A numerical asymptotic analysis of the E'"' reveals that 

where A = 0.780 750 50. This is consistent with the results of Banks et a1 (1973), who 
analysed the large-order behaviour of RS expansions associated with (1.2). The large- 
order formulae are calculated from WKB tunnelling estimates in the limit A + 0-. 

We now consider the continued-fraction (CF) representation of the series in (2.1), 
having the form 

where 

E ( " ) - ( - l ) " + ' A ( $ ) " T ( n + i )  n + c o  (2.2) 

E ( A )  = E ( O ) + A C ( A )  (2.3) 

(2.4) 

A few major properties of continued fractions are given below. Comprehensive 
treatments may be found in the books by Baker (1975), Baker and Graves-Moms 
(1980), Henrici (1977) and Jones and Thron (1980). The CF in (2.4) is non-terminating 
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(unless E ( A )  is rational). By setting c,+~ =0, we produce the nth convergent w,(A) 
to C(A), which may be written as a rational function: 

c2A l+- 
c3 A 

1 +  * .  
l+- 

1 + c,A 

The polynomials A, ( A  ) and B, ( A  ) satisfy the recurrence relations 

& ( A )  =A,-l(A)+c,AA,-2(A) 

& ( A )  = & - , ( A )  + cnABn-z(A) n = 2,3,4, . . . 
with initial values A. = 0, Bo = 1, AI = c1, B1 = 1. An induction argument shows that 
L=deg{A,(A)}= [(n - 1)/2] and M =deg{B,(A)}= [n/2] where [XI =integer part of 
x. The CF representation of the RS perturbation series in (2.3) satisfies the relations 

From (2.5), these relations are equivalent to 

which is the condition defining the unique [L,  MI Pad6 approximants (Baker 1975) 

AE(A) - w,(A)=O(A"+') n = l , 2 , 3  , . , . .  (2.7) 

AE(A ) - A, ( A ) / &  ( A )  = O(ALfM+') (2.8) 

j = O  

L 

i = O  
(2.9) 

to the E ( A )  series. 
The particular CF representations in (2.3) and (2.4) are chosen since many RS 

expansions of the form (2.1) are negative Stieltjes starting at E") (Simon 1970). It 
then follows that C(A) is an S fraction, i.e. that c, > 0, n 2 1. The convergents w ~ ~ ( A )  = 
[ N -  1, N](A) and w ~ ~ + ~ ( A )  = [ N ,  N ] ( A )  yield, respectively, lower and upper bounds 
to E ( A )  on the positive real line. These bounds converge to E ( A )  as N+oo if the 
moment problem is determinate. A sufficient condition for determinacy is that the RS 

coefficients E'"' grow no faster than (2n)! as n+oo, or that the CF coefficients grow 
no faster than n 2  (Henrici 1977). 

Using the quotient-difference (QD) algorithm (Henrici 1977, see also Vrscay and 
Cizek 1986), the first 100 coefficients c, of the ground-state representation have been 
calculated accurately. A numerical analysis, based on the effective use of the Thiele 
CF interpolation methods (Baker 1975) as well as a modified Neville scheme (Bender 
and Orszag 1978), indicates that the c, behave asymptotically as 

(2.10) 
The observed positivity of the c,, indicating that C(A) is an S fraction, strongly suggests 
that the ground-state RS expansion in (2.3) is Stieltjes. The latter property has never 
been rigorously proved for two-dimensional coupled-oscillator problems although it 
is generally believed to be true. The relation between the asymptotic behaviour in 
(2.2) and (2.10) is in accordance with a general result relating the large-n behaviour 
.of Stieltjes coefficients to their CF counterparts (Vrscay and Cizek 1986): if the I?(") 
are coefficients of a (negative) series of Stieltjes, and 

c, - n + ( - 1 ) "A + o ( 1 ) n + m .  

E'"'- (-l)"+lAT(pn+a)B" as n + o o  
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then 

c, - n p  as n + a .  

For the special case p = 1, then the following behaviour is often found: 

1 n even 
i = {  2 n odd 

c,-fBn+A")+R',')  

(2.11) 

(2.12) 

where the A(')  are constants and R'," = o(1) as n + CO. When the above behaviour 
exists, then a further intimate relation between the c, asymptotics and E ( A )  is found: 
if 

E ( A )  - F ( O ) A  lA l+CO (2.13) 

then 

a = f - A A / B  AA E A(' )  - A(2) .  (2.14) 

From (2.10), A( ' )=  - A ( * ) = -  i2 and B =; which implies that a =), in accordance with 
(1.4). 

The result in (2.14) is obtained by replacing the infinite tail of the CF in (2.4) by 
'approximate tails', i.e. 

L I  
I f  ... 

where 

(2.15) 

(2.16) 

and 

E, = gBn + A ( ' )  n 3 N. (2.17) 

In other words, the asymptotic terms R!) in (2.12) have been dropped from the CF 

coefficients in the 'tail'. This truncation procedure produces two sequences { GN,even}, 
{KJ,,~~~} which converge uniformly to C(A) in the limit N + ~3 over compact subsets 
of the cut plane larg(A)I < T. The new 'tail' functions g N ( A )  may be written as ratios 
of contiguous Kummer confluent hypergeometric functions (details are given in Vrscay 
and Cizek (1986)). As a result, an asymptotic expansion of g N ( A )  as A + cc may be 
determined. The 'finite' truncations of (2.15) are then written in terms of the partial 
numerators and denominators A,  and B, of (2.6), i.e. 

(2.18) 

The dominant asymptotic behaviour of (2.18) is found to be 

$,(A) = W,Aa-' A + W  (2.19) 

where a has been defined in (2.14), and the W, are constants. (Note that substitution 
of this result into (2.3) yields the correct infinite-field behaviour (2.13).) The two sets 
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of leading coefficients of (2.19) for the cases N even and odd are given by 

( 2 . 2 0 ~ )  

(2.20b) 

Uniform convergence of the truncations KjN(z) to C ( z )  implies that W,+F(') as 
N + 00. Note that 

W,, BT( n + 1 + A("/ B )  . -- - 
W2n-1 c , , r ( n + A " ) / B )  

Bn + A(') 
c2 n 

+ 1  as n+oo (2.21) - - 

where the limit follows from the asymptotic behaviour of the c, in (2.12).  
In table 1 are presented the numerical values of the estimates WN for N d 24 along 

with an estimation of the limit of each sequence. The estimation was accomplished 
using the Thiele CF extrapolation method (Baker 1975). 

Table 1. Approximations to the leading term coefficient F(O) in (2.6) as yielded by (2.20). 
The final entries represent estimates of the limits of. these sequences, obtained from 
Thiele-Pad6 extrapolation. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

m 

wzn-, 
1.028 135 7156 
1.135 653 1761 
1.132 483 7491 
1.130 263 3995 
1.128 122 4650 
1.126 386 5724 
1.124 973 9464 
1.123 811 0285 
1.122 842 3559 
1.122 024 3549 
1.121 324 3936 
1.120 718 2664 
1.120 187 7556 
1.119 718 9483 
1.119 401 0927 
1.118 925 7830 
1.118 586 3689 
1.118 271 5277 
1.117 9949532 
1.117 735 1264 
1.117 495 1453 
1.117 272 5952 
1.117 065 4507 
1.116 871 9997 

l . l l O *  0.002 

w2n 

1.113 813 6919 
1.126 410 8308 
1.127 719 3700 
1.126 777 8702 
1.125 533 5363 
1.124 379 2923 
1.123 365 0819 
1.122 489 7087 
1.121 7349575 
1.121 080 3416 
1.120 508 1485 
1.120 003 9438 
1.119 556 1217 
1.119 155 3935 
1.1187943225 
1.1 18 466 9260 
1.118 168 3562 
1.117 8946542 
1.1176425611 
1.117 409 3736 
1.117 192 8317 
1.116991 0326 
1.116 802 3628 
1.1166254448 

1.1 10 i 0.002 
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As stated earlier, the true convergents w , ( A )  to C(A) provide upper and lower 
bounds to the Stieltjes function E ( A )  which converge to it as n + m .  This is the basis 
of the usual Pad6 or CF summability of the RS perturbation series. We postpone 
discussion of the application of this method to the next section, where it will be 
compared to a much more powerful summability method. 

3. 'Renormalised' RS perturbation theory 

In this section, we outline two possible methods of 'renormalising' standard RS perturba- 
tion expansions, effectively transforming a problem over the infinite coupling constant 
range A E [0, CO) into one over a finite range p E [0, l),  where p denotes the renormalisa- 
tion parameter (Vrscay 1988). In both cases, the renormalisation is equivalent to a 
linear transformation of the original RS coefficients E'"', n = 1,2, .  . , . 

An immediate and attractive possibility of obtaining the infinite-field limit Hamil- 
tonian H ,  in (1.3) from our standard Hamiltonian in (1.1) is to construct the following 
'renormalised' Hamiltonian: 

H R ( p ) +  = [ p :  + p i  + x 2 + y 2 +  ~ ( x ' Y '  - X' - y ' ) ]+  

= G(P)+ (3.1) 
so that the eigenvalue G( 1) corresponds to the eigenvalue F'O) of H ,  in (1.3). Clearly, 
G(0) = E ( 0 )  = E'''. We now assume a perturbation expansion to G(p)  of the form 

G(P)= G'"'P" 
n =o 

If the coordinates in (3.1) are scaled as x + T ' / ' x ,  y + ~ " ' y ,  where 0 s 7' = 1 - p s 1, 
the eigenvalues of (3.1) and (1.1) are related as follows: 

G(P ) = (1 - p ) "'E ( p  ( 1 - p ) - 3 / 2 ) .  (3.3) 
This relation effectively defines a 'renormalisation map' on the positive real line, 
R: p E [0, l ) +  A E [0, CO). If the RS expansions of G(p)  and E ( X )  are used formally 
in (3.3), along with the appropriate binomial expansion for (1 - p)-3'2,  then a collection 
of like terms yields the relation 

n 
E'k'.  

r ( k +  n -4) G(" '= 
k = O  r ( 2 k - + ) r ( n  - k +  1) (3.4) 

An asymptotic analysis of this relation shows that G'"' = O(E'" ' )  as n -* CO. As in the 
case of one-dimensional problems, the Bore1 summability of the p series in (3.2) to 
G(P) for p E [0, 1) can be established, since this problem differs very little from the 
usual multidimensional anharmonic oscillator problems, such as (1.2), which have 
been studied in detail (Simon 1971). 

In table 2 are listed estimates of the ground-state eigenvalue G(l)  = F(O) of the 
Hamiltonian H ,  in (1.3). These estimates are obtained from convergents w , ( p )  to the 
continued-fraction representation of the renormalised P series in (3.2). This series is 
not rigorously Pad6 summable, so the estimates do not yield rigorous bounds to G(1). 
Nevertheless, the diagonal Pad6 sequences generated by the convergents of CF rep- 
resentations to the renormalised p series demonstrate excellent convergence to limits 
which lie within the rigorous upper and lower bounds yielded by the moment method 
and in the next section. 
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Table 2. Estimates of the ground-state eigenvalue G (  1) = F(O), of the infinite-field Hamil- 
tonian H, in (1.3), obtained from convergents w, ( p )  of the continued-fraction representa- 
tion to the renormalised p series of (3.2). 

1 
5 

10 
20 
25 
26 
27 
28 
29 
30 

1.25 
1.116 4510 
1.110 8372 
1.108 3009 
1.108 2650 
1.108 2318 
1.108 2537 
1.108 2380 
1.108 2445 
1.108 2389 

We may also employ the renormalisation equation (3.3) to accurately estimate 
ground-state eigenvalues E ( A )  over the entire range O <  A <CO. The scaling trans- 
formations used to derive (3.3) are effectively inverted to give 

E ( A ) = T - ~ G ( I - T ~ )  (3.5) 

~ ~ ~ + ~ * - 1 = 0 .  (3.6) 

where T is the root of the equation 

Note that T = 1 ( p  = 0) when A = 0 and T+ 0 ( p  + 1)  as A +CO. For a given value of 
A, E ( A )  is then calculated by (i) computing T in (3.6) to a prescribed accuracy using, 
for example, the Newton-Raphson method (only one root lies in the interval (0, l ) ) ,  
(ii) ‘summing’ the renormalised /3 series via Borel, PadB, etc, and (iii) computing E ( A )  
from (3.5). The maximum error in E ( A )  will be incurred in the high-field limit A + 00, 

Table 3. Estimates of the ground-state eigenvalues E(A) to the Hamiltonian of ( l , l ) ,  
obtained from Pad6 approximants (continued-fraction convergents) to the (i) renormalised 
p series, (3.2) and (3.5), and (ii) usual RSFT A series, (2.1). The entries in the table 
correspond to [14,15] Pad6 approximants (w3& The asterisk indicates that the [14, 141 
Pad6 results ( w ~ ~ )  are obtained by replacing the last n digits by the n digits in parentheses. 
(The A-series estimates A = 0.1 are virtually identical to the p-series estimates and have 
not been included.) 

A p series A series 

0.1 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 

10.0 
100.0 

1000.0 
10000.0 

2.024 138 321 415 731 606 391 632 59 (60)* 
2.108 213 779 698 540 (2) 
1.195 918 085 201 (3) 
2.339 566 210 4 (7) 
2.458 376 909 (1 1) 
2.561 626 587 (96) 
2.653 909 81 (3) 
3.019 178 l ( 3 )  
5.460 99 (101) 
11.232 56 (61) 
23.946 3 (4) 

2.108 213 779 698 4 (9) 
2.195 918 084 5 (62) 
2.339 565 9 (67) 
2.458 37 (8) 
2.561 6 (7) 
2.653 8 (41) 
3.017 (22) 
4.78 (6.59) 
5.6 (37.5) 
5.7 (345.3) 
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i.e. p = 1, and is given by the error of G(P = 1) in estimating F(O), since E ( A )  - F'O'A 
as A+co.  

In table 3 we list some estimates of the ground-state eigenvalue E ( A )  for a range 
of A values. For comparison, we include the results of direct Pad6 summation of the 
usual RS expansions. 

4. Bounds for the ground-state eigenvalue by the moment method 

In several recent works (Handy and Bessis 1985, Handy et a1 1988ab, Bessis et a1 
1987) an eigenvalue moment method has been developed for generating rapidly 
converging exact bounds to ground-state energies of bosonic systems. These methods 
can be extended to excited states. However, we limit this discussion to an analysis of 
the ground state of our coupled oscillator problem. (Let us reiterate that the renor- 
malised perturbation methods of the previous section, although providing excellent 
estimates of eigenvalues, do not establish rigorous bounds.) 

The moment method is particularly effective for addressing strongly coupled sin- 
gular perturbation problems. It exploits the unique non-negative character of the 
bosonic ground-state wavefunction $(x) (Reed and Simon 1978) as well as its bounded 
asymptotic behaviour (Agmon 1983). The latter guarantees that the associated power 
moments: 

(4.1) 

where R denotes the appropriate (real) domain of integration, are finite. The combina- 
tion of these two essential properties permits a transformation of the quantisation 
problem associated with the Schrodinger equation into a pure 'moment problem' 
(Shohat and Tamarkin 1963). An infinite hierarchy of moment constraints are defined 
which determine the allowed physical energy through rapidly converging bounds. The 
relevant details of the method are given in the references cited above. We illustrate 
briefly with the case of a one-dimensional Stieltjes moment problem, i.e. R = [0, CO), 

which is often encountered in Schrodinger eigenvalue problems. A necessary and 
sufficient condition for the sequence of positive numbers p ( n )  to be moments of a 
non-negative distribution is that the Hankel-Hadamard determinants (Baker and 
Graves-Morris 1980), which are defined as 

A n )  p ( n  + 1) 
p ( n + l )  p ( n + 2 )  

p ( n + m )  p ( n + m +  

H(n, m )  = 

satisfy the inequalities 

I . .  + m )  
. . .  p ( n + m + l  

) . . .  p(n+2m)  

( 4 . 2 ~ )  

H(0 ,  m )  > 0 H ( l , m ) > O  m=0 ,1 ,2  , . . . .  (4.2b) 

In the reformulated moment problem, the moments p ( n )  will be functions of the 
unknown eigenvalue E. As m in these inequalities increases, i.e. as more moments are 
being incorporated, stronger constraints are being imposed on the intervals in which 
E can be found. These constraints manifest themselves as increasingly tighter upper 
and lower bounds to E. 
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The following moment analysis of the two-dimensional problem employs a special 
transformation. In order to emphasise its significance, as well as familiarise the reader 
with our notations, we first apply it to the trivial one-dimensional harmonic oscillator 
problem: 

-$”+x2$ = E$. (4.3) 
The dominant asymptotic behaviour for physical and unphysical solutions to (4.3) is 
provided by the zeroth-order JWKB function: 

$(x) = exp( *tfx2). (4.4) 

(4.5) -$<a s5. 1 
+ ( X I  = exP(-(YX2)$(X) 

We now transform the original problem, (4.3), into one involving the function 

As in the $ representation case, the ground state in the 4 representation is unique, 
non-negative and has finite power moments ~ ( n ) .  If I c u I > t f ,  then unphysical $ soh-  
tions, with infinite moments, will have associated bounded + representations, with 
finite moments. In such cases, the moment method may not yield converging bounds 
to the ground-state energy. 

In terms of the allowed (Y values, the transformed Schrodinger equation becomes 

- ( + ” + 4 ( ~ ~ + ’ + 2 ( ~ 4 ) + ( 1  - ~ ( Y ~ ) x ~ + = E + .  (4.6) 
We now choose (Y = f  to eliminate the last terms on the LHS. An integration of (4.6) 
by parts on the real line, with appropriate boundary conditions, shows that the 
Hamburger power moments of 4 :  

(4.7) 

satisfy the recursion relation 

[ E - 1 - 2 p l P . ( p ) = - p ( p - l ) P u ( P - 2 ) .  (4.8) 
Odd-order moments vanish since the ground-state wavefunction possess even parity. 
Through the simple change of variable, y = x z ,  one can show that the even-order 
Hamburger moments are equal to Stieltjes moments of a suitably defined distribution, 
i.e. 

P ( 2 P )  = U(P) = ~omY”)Y-”” dy. (4.9) 

The Stieltjes moments satisfy the recursion relation 

( E  - 1 -4p)u(p) = - 2 p ( 2 p  - l )u(p - 1 )  pbO. (4.10) 

The homogeneous nature of this moment equation shows that the ‘initial condition’, 
u(O),  is arbitrary. Keeping in mind that the physical ground-state wavefunction must 
be non-negative, we normalise the moments by setting u(0) = 1. It then follows from 
(4.10) that the ground-state energy must be E = 1. 

Had the special transformation of (4.5) not been adopted, then a ‘full moment 
method Hankel-Hadamard analysis’ (Handy and Bessis 1985) would have been 
necessary. Bounds to the energy are also achieved with this formalism, but their rate 
of convergence is not as rapid. This is especially important for the problem to be 
discussed below. 
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The two-dimensional coupled-oscillator problem of (1.1) clearly exhibits a quartic 
anharmonic structure away from the x and y coordinate axes. Along these axes, it is 
harmonic in nature. A two-dimensional moment analysis may be performed directly 
on (1.1). However, a dramatic improvement in convergence can be achieved by 
transforming the wavefunction in a manner analogous to the one-dimensional problem, 
namely 

(4.11) 

The ground-state wavefunction must satisfy the interchange and reflection symmetry 
conditions $(x, y )  = $(U, x) and $(x, y )  = $(-x, y )  = $(x, - y ) ,  respectively. We define 

4 ( x ,  Y )  = $(x, v) exp[-3(x2+y2)1. 

the two-dimensional Hamburger moments for this problem as 
m m  

P ( P ,  4 ) =  I_, j-mxpY*4(x,Y) dx BY. 

As in the one-dimensional case, moments with either p or q odd vanish 
non-zero moments are then equivalent to two-dimensional Stieltjes moments: 

4.12) 

The 

PPP ,  2q) = U(P, 4 )  = lom lom ~ ~ y * 4 ( x ’ / ~ ,  y 1 ’ z ) x - 1 / 2 y - 1 / 2  dx,dy. (4.13) 

Coordinate interchange symmetry yields u ( p ,  q )  = U( q, p ) .  The corresponding moment 
recursion relation for this problem is 

A u ( p  + 1, q + 1) = [ E  - 2(2P +2q + l)lU(p, 4 )  

+ r 2 P ( 2 P - l ) 4 P - 1 , 4 ) + 2 q ( 2 9 - l ) u ( P ,  s-1)1. (4.14) 
We designate the ‘missing moments’ to be the set { u ( p ,  0)). Once the first M +  1 

of these are specified ( O S p  S M ) ,  all the moments within the square { u ( p ,  q ) l O s p ,  q s 
M }  are determined. The homogeneous and linear dependence of the moments on the 
‘missing moments’ can be represented by 

Lf 

The normalisation prescription will be 
M c u(k,O) = 1 (4.16) 

which serves to constrain u(0 ,O) .  The M,(p ,  q, k) are energy-dependent coefficients 
recursively obtainable from (4.14). 

It has been established elsewhere (Handy et a1 1988a, b) that the necessary and 
sufficient conditions for the moments in (4.14) to correspond to a non-negative function 
are given by the linear inequality constraints: 

k = O  

(4.17) 

where T = O ,  1 and the Ci.j are arbitrary. The coordinate sequence ( i , , jn)  = ( i , j ) u  is 
ordered as follows. First, a parameter 1 2  0 is chosen. We limit ( i , j ) ,  to lie within 
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the region Os i, j 6  I. We take (O,O),=, and sequentially order the remaining 
( I +  1)2- 1 points by varying i while keeping j fixed, i.e. (0, 0)1, (1, 0)2,. . . , ( I ,  O),,,, 
(0, 1)1+2, , . . . From the nature of (4.17) it is clear that, for a given ‘ I ’ ,  moments within 
the [0, MI x [0, MI square region will be required, where M = 2 1  + 1 is the number 
of missing moments. The variable dimensionality, 0, must satisfy the 
inequality D 6 ( I  + 1). 

The linear programming ‘cutting’ methods developed in Handy et a1 (1988a, b) are 
used to analyse (4.17). The bounds obtained are cited in table 4. For purposes of 
comparison, table 5 presents the bounds obtained by moment methods without employ- 
ing the transformation in (4.1 1). The improvements afforded by the transformation 
are easily seen. In both tables a rescaling of the moments, u ( p ,  q ) s - (p+q) ,  was imple- 
mented in order to avoid large numbers. The parameter s was taken to satisfy 
( 2 ~ 4 ) ~ ~ ~  = 1, as motivated by considering the kinetic energy contribution to the 
moment equation in (4.14). 

Table 4. Lower and upper bounds, E ( - )  and E ( + ) ,  respectively, to the ground-state energy 
E ( A )  of ( l . l ) ,  using the ‘transformed’ moment recursion relation, (4.14). 

A Z D E ( - )  E ( + )  

1 1 4 2.1 2.3 
2 9 2.195 2.198 
3 16 2.195 91 2.195 95 
4 25 2.195 9178 2.195 9192 
5 30 2.195 9180 2.195 9182 

10 1 4 2.6 4.7 
2 9 2.9 3.1 
3 16 3.014 3.027 
4 25 3.018 4 3.020 0 
5 36 3.019 1 3.019 3 
6 40 3.019 16 3.019 20 

100 4 25 5.42 5.50 
5 36 5.45 5.47 
6 40 5.458 5.464 

1000 4 25 10.8 11.4 
5 36 11.12 11.32 
6 49 11.20 11.26 

Table 5. Lower and upper bounds, E ( - )  and E ( + ) ,  respectively, to E(A) using moment 
relations associated with the ‘untransformed’ Schrodinger equation. 

A Z D E ( - )  E ( + )  

1 4 25 2.188 2.214 
5 30 2.188 2.199 

100 3 16 4.3 6.8 
4 25 5.1 5.8 
5 36 5.36 5.60 
6 46 5.42 5.50 
7 51 5.43 5.48 
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Table 6. Lower and upper bounds, F ( - )  and F(+j, respectively, to the ground-state 
eigenvalue F(') of the infinite-field Hamiltonian Ha in (1.3). 

I D F(-j F(+)  

3 16 0.7 1.6 
4 2s 0.9 1.3 
5 36 1.04 1.16 
6 49 1.08 1.13 

Finally, we apply the moment method to the infinite-field Hamiltonian, (1.3), to 
obtain bounds to the (ground-state) eigenvalue F(O). The missing moment structure, 
but not the equation, associated with the eigenvalue problem Ha+ = F+ is identical 
to (4.14). In table 6 are presented bounds for F(O) yielded by this method. As mentioned 
in the previous section, the bounds bracket the estimates afforded by summability of 
the renormalised /3 series. 
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